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Abstract. We consider efficient algorithms for timetable information in
public transportation systems under multiple objectives like, for example,
travel time, ticket costs, and number of interchanges between different
means of transport. In this paper we focus on a fully realistic scenario in
public railroad transport as it appears in practice while most previous
work studied only simplified models.

Algorithmically this leads to multi-criteria shortest path problems in
very large graphs. With several objectives the challenge is to find all
connections which are potentially attractive for customers. To meet this
informal goal we introduce the notion of relaxed Pareto dominance. An-
other difficulty arises from the fact that due to the complicated fare reg-
ulations even the single-criteria optimization problem of finding cheapest
connections is intractable. Therefore, we have to work with fare estima-
tions during the search for good connections.

In a cooperation with Deutsche Bahn Systems we realized this sce-
nario in a prototypal implementation called PARETO based on a time-
expanded graph model. Computational experiments with our PARETO
server demonstrate that the current central server of Deutsche Bahn AG
often fails to give optimal recommendations for different user groups. In
contrast, an important feature of the PARETO server is its ability to
provide many attractive alternatives.

1 Introduction

We consider efficient algorithms for timetable information in public transporta-
tion systems (with emphasis on public railroad systems) under multiple objec-
tives. We concentrate on three optimization criteria: travel time, fare and number
of train changes. However, it is easy to add further criteria like the possibility of
seat reservation or safety margins for train changes in case of delays.

Previous work. In recent years several papers studied models for timetable in-
formation. These models are based on suitably constructed digraphs on which
one can apply shortest path algorithms to answer queries. Two main approaches
have been proposed: the time-expanded [13,17,8,7,18] and the time-dependent
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approach [11,12,10,1]. In the time-expanded digraph we have a node for each
event (departure or arrival of a train) at a station. Basically, there are two kinds
of edges: train edges connecting the departure of a train with its arrival at the
next station and waiting edges within a station. Fixed weights are assigned to
the edges like e.g. travel time. This construction usually creates very large but
sparse graphs.

In the time-dependent approach [1] every node represents a station and two
nodes a and b are connected by an edge if there is a train that departs at a
and arrives at b without stopping in between. The key idea in a time-dependent
digraph is that the time-delay of an edge depends on the point in time the edge
is used. So the weights on the edges are computed “on-the-fly”. This models the
phenomenon, that the delay an edge induces depends on the path that is used
to reach this edge.

Most of the cited work on public railroad information systems solely con-
siders single-criteria optimization. Next we briefly sketch the previous work on
multi-criteria shortest path problems. For a more complete overview, we refer
to the section on shortest paths in the recent annotated bibliography on multi-
objective combinatorial optimization [2,3]. The standard approaches to the case
that all Pareto optima have to be computed are generalizations of the standard
algorithms for the single-criterion case. Instead of one scalar distance label, each
node v ∈ V is assigned a number of k-dimensional vectors, which are the lengths
of all Pareto optimal paths from s to v (clearly, for k = 1 the Pareto optima
are exactly the distance labels). For the bicriteria case, generalizations of the
standard label setting (Dijkstra’s algorithm) [4] and label correcting [16] meth-
ods have been developed. In the monograph of Theune [19] algorithms for the
multi-criteria case are described in detail in the general setting of cost structures
over semi-rings. A two-phase method has been proposed by Mote et al. [5]. They
use a simplex-type algorithm to find a subset of all Pareto optimal paths in the
first place, and a label-correcting method to find all remaining Pareto optimal
paths in the second phase.

The crucial parameter for the run time and the space consumption is the total
number of Pareto optima over all visited nodes. The insight that this number
is exponential in |V | in the worst case has motivated the design of approxima-
tion algorithms. Hansen [4] and Warburton [20] both present a fully polynomial
approximation scheme (FPAS) for finding a set of paths which are approxi-
mately Pareto optima for the bicriteria shortest-path problem. The (resource)-
constrained or weight-restricted shortest-path problem [9] is a simplifying (yet
still NP-hard) variation of the bicriteria case. Here only one Pareto optimal
path is to be computed, namely the one that optimizes the first criterion sub-
ject to the condition that the second criterion does not exceed a given threshold
value. A theoretical study on the size of the Pareto set in practical applications
appeared in [8].

Our contribution. As mentioned in the beginning, the challenge is to find all
reasonable train connections meeting a query. The traditional concept of Pareto



248 M. Müller-Hannemann and M. Schnee

optimality bears two problems: First, many attractive alternatives will be sorted
out if classical Pareto dominance is applied. Second, some Pareto-optimal solu-
tions may be practically useless. The latter problem can easily be overcome: we
just eliminate practically useless connections in a postprocessing step. To cope
with the first problem, we introduce in Section 2 the concept of relaxed Pareto
dominance which allows us to identify also “near-optimal” solutions.

This work arose in cooperation with Deutsche Bahn Systems. Within this
project we built an information server called PARETO. As described above,
there has been a number of papers on time-table queries in recent years, but
most of them considered only very simplified scenarios. In contrast, our aim was
to incorporate all necessary details and side-constraints such that the output of
our server could in principle be used even for purposes like ticketing.

In [7] we already argued that the time-expanded model might be more ap-
propriate to model such complex scenarios than the time-dependent approach.
The recent studies of Pyrga et al. [14,15] supported this claim and also indicated
that the better computational efficiency of the time-dependent model diminishes
greatly if the model becomes more realistic. Therefore, we use a time-expanded
graph model to capture all practical requirements. Unfortunately, due to com-
plicated fare regulations (in particular, fares are not additive on the edges in
the underlying graphs) even the single-criteria optimization problem of finding
cheapest connections is intractable. Therefore, we have to work with fare esti-
mations during the search for good connections.

In principle, our system uses a generalized version of Dijkstra’s algorithm for
finding the Pareto-optimal set of solutions. This system has been adapted to our
relaxed notion of Pareto-optimality and to the approximation of fares during
the search. As speed-up techniques we use goal-directed search and improved
dominance tests with the terminal station of a query. The goal-directed search is
made effective by using lower bounds based on an auxiliary station graph (which
will be defined in Section 5.1).

Finally, we provide results from a computational study. It turns out that the
current version of the Deutsche Bahn server often fails to find optimal solutions
for several different user groups. Moreover, our PARETO server has the advan-
tage to offer many more attractive alternatives which the Deutsche Bahn server
does not find. This is an important feature for marketing reasons to improve
customer satisfaction. Namely, with the larger pool of attractive connections
that PARETO delivers, the railway company may use the timetable information
system to balance the usage of trains more evenly and to improve the availabil-
ity of seat reservations. If there are enough good alternatives then connections
with trains working to capacity may simply be suppressed in the interface of the
information system.

Overview. The rest of the paper is organized as follows. First, in Section 2,
we provide further background information about railway timetable information
systems. In particular, we explain in detail the specification of queries and side
constraints for feasible answers. We discuss different possibilities to evaluate and
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to compare train connections with respect to several objectives simultaneously,
and introduce our concept of relaxed Pareto dominance. In Section 3, we briefly
sketch our time-expanded graph model used for timetable information and dis-
cuss it in comparison with a time-dependent graph model. In Section 4, we
describe our information server PARETO. Specific speed-up and space-saving
techniques are discussed in Section 5. Then, in Section 6, we present our com-
putational results and compare them with results of the Deutsche Bahn server.
Finally, we conclude with a summary and possible future extensions.

2 Railway Timetable Information Systems

2.1 Specification of Queries

A query to a timetable information system usually includes:
The (start or) source station of the connection, the target station and an in-

terval in time in which either the departure or the arrival of the connection has
to be, depending on the search direction, the user’s choice whether to provide
the interval for departure (“forward search”) or arrival (“backward search”).1

Additional query options include:

Vias and duration of stay. A query may contain one (or more) so called vias,
stations the connection has to visit and where at least the specified amount of
time can be spent, e.g. from Cologne to Munich via Frankfurt with a stay of at
least two hours for shopping in Frankfurt.

Train class restrictions. Each train has a specific train class assigned to it. These
classes are high-speed trains such as the German ICE and French TGV; ICs and
ECs; Interregios and the like; local trains, “S-Bahn” and subway; busses and
trams. The query may be restricted to a subset of all train classes. By excluding
high speed trains one might be able to find cheaper connections.

Attribute requirements. Trains have attributes describing additional services they
provide. Such attributes are for example: “bike transportation possible”, “sleep-
ing car”, “board restaurant available”. A user can specify attributes a connection
has to satisfy or is not allowed to have. We allow Boolean operators for specifying
attribute requirements like: (a restaurant OR a bistro) AND bike transportation.

2.2 Connections Matching a Query

A connection needs to be feasible and has to satisfy all requirements of the query
specification to match the query. Some additional feasibility requirements are:

Meta Stations and Source-/Target-Equivalents. For a passenger it might be unim-
portant to start at a specific stations, as long as these stations are relatively close
1 Note that the specification of an interval is crucial for typical pre-trip queries al-

though previous work often assumes single point intervals.



250 M. Müller-Hannemann and M. Schnee

together. Virtual meta stations group such stations together (like the railway
station and bus stops that can be found right next to each other at the cen-
tral station of any city). Source/target-equivalents group stations together in a
similar fashion, but not as a new virtual station: Every source/target-equivalent
consists of a station and its possible replacements.

A meta-station or source/target-equivalent may replace the source and target
station as well as any via in a query.

Special attributes: NotIn / NotOut. There are some train and station related at-
tributes that do have a special meaning for the stops of a train. Although a train
stops at a station, boarding or leaving the train or both may not be allowed.
Especially for night and high-speed trains there are some stations near the origin
of the train where one is only allowed to enter the train and some stations near
the end where one is only allowed to leave it. In a night train passengers should
not be disturbed by too much “traffic” inside the train. In both cases the trains
should not be used only for a short transfer. Passengers are encouraged to rather
use local transportation instead.

Traffic days. Most trains do not operate on a daily basis. There is a lot of change
during the year. Some trains only operate on workdays, others only on Sundays.
National and local holidays affect the days of operation as well as school holidays.

Interchanges. The time table data provides rules for a lower bound on the time
between the arrival of a train and the departure of its connection if a change of
trains occurs. Arranged from most general to most specific these are:

• Interchange rules at stations. Every station has two interchange times: one
for interchanges between two faster (or higher valued) trains like the German
ICE or French TGV and one for all other interchanges.

• Transfers between transfer classes. Each train is associated with a transfer
class. The time needed for the train change depends on the transfer classes
of the arriving train at arrival and the leaving train at departure. There are
rules with and without dependence on the station of the train change.

• Line to line transfers. Similar to the transfer classes each train may be asso-
ciated with a line it serves and specific rules for line changes.

• Service to service transfers. The most specific interchange rule gives inter-
change times between individual trains.

2.3 Measuring the Quality of Connections

Most timetable information systems only regard one criterion, namely travel
time. As mentioned before we want to focus on the three criteria travel time,
ticket costs, and number of interchanges. Simply minimizing any of these three
independently (or all three separately) is obviously not the method of choice. In
the weighted multi–criteria case an evaluation function c may look like:

c = ϕ · travel time + ξ · number of interchanges + ϑ · ticket cost.
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Table 1. Example connections

Connection Departure Travel time Number of Price Pareto
(minutes) interchanges (Euro) optimal

c1 7 : 30 110 2 75
c2 8 : 00 100 2 75

√

c3 8 : 00 160 0 60
√

c4 8 : 00 200 3 35
√

c5 8 : 00 300 3 34
√

c6 8 : 15 110 1 45
√

Different choices for the set of parameters {ϕ, ξ, ϑ} express the difference in im-
portance of the three criteria. Users may never see some interesting alternatives
(for them) if either they or a system/operator sets the wrong parameters.

To overcome this problem the concept of Pareto-optimality treats all criteria
as equally important. For two given k-dimensional vectors x = (x1, . . . , xk) and
y = (y1, . . . , yk), x dominates y if xi ≤ yi for 1 ≤ i ≤ k and xi < yi for at least
one i ∈ {1, . . . , k}. Vector x is Pareto optimal in set X if there is no y ∈ X
that dominates x. Here, we assume for simplicity that all cost criteria shall be
minimized. In our scenario we compare 3-dimensional vectors (travel time, ticket
costs, number of interchanges) for our connections. Note that this approach is
easily extendable to cover further criteria.

Consider the connections of Table 1: Connections c2 to c6 are Pareto optimal.
The single-criterion and weighted-criteria approaches (for some parameters) both
do not find c6 which is probably the most promising of all connections for most
people. Unfortunately, the classical Pareto approach has its drawbacks as well:
Suppose connection c6 does not exists in the list. Although connection c1 is
dominated by c2 it still arrives earlier at its destination. A passenger using
a timetable information system at the departure station might prefer c1 as it
leaves more time to get to his final destination from the target station instead
of waiting 30 minutes at the departure station. In spite of being Pareto optimal
connection c5 is of no practical use at all. The almost as cheap alternative c4 is
much more attractive.

Relaxed Dominance

To tackle the drawbacks of the simple Pareto dominance approach we relax the
dominance rule in the relaxed Pareto dominance case. This means that more
pairs of connections become mutually incomparable. In addition to the cost
criteria travel time, travel fare and number of train changes, further aspects are
taken into account to define the smaller relation between connections.

Formally, we now consider n-dimensional (integral or real-valued) vectors x =
(x1, . . . , xk, xk+1, . . . , xn) ∈ S where the first k components are cost criteria
and the remaining n − k components encode additional data (like departure
and arrival time, highest used train class). Furthermore, for each cost criterion
we have a non-negative relaxation function fi : S × S �→ R

+
0 ∪ {+∞}. For
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any two x, y ∈ S we now define that x dominates y (in the relaxed sense) if
xi + fi(x, y) ≤ yi for all 1 ≤ i ≤ k and xi + fi(x, y) < yi for at least one
i ∈ {1, . . . , k}. Note, that in order to be able to apply relaxed Pareto dominance
during search and/or for final filtering of the connections, it is essential that
dominance is a transitive relation. This restricts the set of reasonable relaxation
functions. Next we give examples how to specify suitable relaxation functions fi.

• The travel time spent for getting less expensive connections has to yield a
fair hourly wage, say of Δ Euros per hour. (In the examples of Table 1 an
hourly wage of less than one Euro is not enough to make connection c5 worth
considering.) This can be modeled as follows. Suppose we want to compare
connections A and B with associated costs cA, cB in Euros and travel times
tA, tB in minutes, respectively. Then connection A dominates B with respect
to the cost criterion only if

cA +
max{tA − tB , 0}

60
· Δ < cB.

• The larger the time difference between the departure and arrival times of two
connections is, the less these connections should influence each other.
Suppose we want to compare connections A and B which have departure
times dA, dB, arrival times aA, aB and travel times tA, tB (all data given in
minutes), respectively. Then connection A dominates B with respect to the
criterion travel time if

tA + α(tA) · Δ(A, B) + β(tA) < tB,

where, e.g., we may choose α(tA) := tA/360 and β(tA) := 5 +
√

tA/4, and
define

Δ(A, B) =
{

0 if dA > dB and aA < aB,
min{|dA − dB|, |aA − aB|}, otherwise .

• Different kinds of connections shall not dominate each other (e.g., connections
using an event train (e.g. a special train to a sports event) or night trains).
Using night trains one does not want to arrive as fast (and/or cheap) as
possible but has the chance to arrive relaxed and even save a night’s stay at a
hotel. Both these alternatives should not be dominated by connections using
other kinds of transportation. This can be modeled by defining a relaxation
function to be +∞ if the encoding of the train class attributes forbids a mutual
domination.

Incomparable connections do not dominate each other, thus attractive alterna-
tives are not suppressed. It is easy to check that all the proposed relaxation
functions preserve the desired transitivity of our Pareto dominance relation. In
Section 4.2 it will turn out that this concept can also be used to handle special
tariffs of pricing systems.

Our overall goal is to determine the complete set of connections not domi-
nated by relaxed dominance. However, some other aspects are still not covered,
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like the stability of a connection, i.e. how high is the possibility of getting all
interchanges, the aim to use a sleeping cart as long as possible during the night,
the maximization of a stay at “nicer” locations, lovely panorama etc.

3 Modeling Timetable Information in Graphs

3.1 A Time-Expanded Graph Model for a Realistic Scenario

Schulz et al. [17] introduced the time-expanded model to compute earliest arrival
paths which assumed zero interchange times. Modifications to allow the counting
of train interchanges with {0, 1}-weights in a Dijkstra-search have been proposed
in [8,7,15]. The extension of Pyrga et al. [15] models also some basic interchange
rules with the concept of change nodes: In their time-expanded digraph there is
one node for each departure and arrival event of every train. The departure of a
train at one station and its arrival at the next station are connected with a train
edge. The so-called change nodes are copies of all arrival and departure events. A
waiting edge is introduced between each change node and the next change node
in time at the same station (introducing a waiting arc over midnight between
the last and first change node at that station as time is taken modulo a single
day). Between the arrival of a train and its departure at the same station there
is a stay in train edge in the graph.

We further extended the model to cover all interchange rules and the special
attributes NotIn/NotOut (cf. Section 2.2): If boarding is permitted we have
an entering edge from the change node copy to the original departure node.
If leaving a train is possible, we have one leaving edge connecting the arrival
with the change node at the point in time from which on all other events are
reachable, i.e. the time difference of this node to the arrival is the maximum
over the interchange times required by all change rules concerning this train at
this station. For all trains reachable before this point in time we have special
interchange edges from the arrival to the departure nodes of the corresponding
trains. The first two types of edges can also be found in the model by Pyrga et
al. but with different semantics.

It is easy to see that we have indeed covered all interchange rules and the
attributes NotIn/NotOut. Take a look at Fig. 1 (left) for an example. Arriving
with train t we here can either stay in train t (use stay in train edge e) or
change to t∗ what is possible due to some interchange rule e.g. service to service
transfer (special interchange edge f). However, we can not take t′ (for example,
if the minimum interchange time at the station does not allow this). Therefore,
we needed the special interchange edge to reach t∗ and not to reach t′ from t
although entering t′ is allowed from the change level. Every event from time b
on is again reachable (leaving edge g to change node at time b), e.g., we can take
train t′′ (via entering edge h). Train t′ stops at the station only for boarding (no
leaving edges for the arrival at time a).

Traffic days, possible attribute requirements and train class restrictions with
respect to a given query can be handled quite easily. We simply mark train edges
as invisible for the search if they do not meet all requirements of the given query.
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Fig. 1. Time expanded model without special interchange edges (left) and an extension
to skip arrival change nodes in forward search (right) cf. Section 5.4

With respect to this visibility of edges, there is a one-to-one correspondence
between feasible connections and paths in the graph.

We associate component-wise non-negative cost vectors to the edges. Here
we describe only the choice for forward search, the necessary modifications for
backward search should be obvious. For the cost criterion travel time, the cost
for edge e = (v, w) is the difference between the timestamps of the nodes w
and v. For the cost criterion number of train changes, all entering edges and all
special interchange edges get a cost value of 1, and all other edges a value of 0.
(More precisely, such an assignment counts the number of used trains.) Ticket
costs are more difficult to handle. We come back to this issue in Section 4.2.

3.2 Discussion: Time-Expanded vs. Time-Dependent Models

For single–criteria shortest path search, the time-dependent model seems to be
more attractive due to its smaller sized graph that drastically speeds up the
search. This advantage does not hold for more realistic scenarios. In recent ex-
periments for computing all Pareto optima for two criteria Pyrga et al. [14] did
not show a big advantage for time-dependent models. Not only did the size of
the graph significantly grow due to their modeling of constant transfer times
(which are still far from reality), the computational time required for solving the
problem on the time-expanded graph was only 58% higher than for the time-
dependent graph. Their constructions in [14] show how difficult the extension to
model more realistic scenarios is. The general interchange rules and the special
attributes disallowing boarding and deboarding even violate assumptions made
for the most realistic model of interchanges known for time-dependent graphs
(i.e. taking a later connection might allow for taking an earlier connection at
some subsequent station). The time-dependent approach is not as easily extend-
able to cover traffic days, attribute requirements and train class restrictions as
the time-expanded approach as already observed in [7].
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Considering time intervals instead of points in time for possible departures
requires either lists of labels for each node or computing a solution for each
node in the interval. The latter is surely not reasonable for larger intervals. In
summary, the time-expanded model is much more flexible and extensible (for
possible further extensions see Section 7). Therefore, we used the time-expanded
model for our algorithm.

4 The Information Server PARETO

4.1 The Search Algorithm in PARETO

Our algorithm is a “Pareto version” of Dijkstra’s algorithm using multi-dimensio-
nal labels. See Möhring [6] or Theune [19] for a general description and correct-
ness proofs of this approach.

We keep the travel time, number of interchanges, ticket costs (cf. Section 4.2)
and some additional information in the labels. For every node in the graph we
maintain a list of labels that is not dominated by any other label at this node.
Every time a node is extracted from the priority queue, its outgoing edges are
scanned and (if they are not infeasible due to traffic days, attributes and train
class restrictions etc.) labels for their head nodes are created. Such a new label is
compared to all labels in the list at the head node and only inserted into that list
and into the priority queue if it is not dominated by any other label in the list.
On the other hand, labels dominated by the new label are removed. For changes
to this basic algorithm see the rest of this Section (for modeling reasons) and
Section 5 (for space and time consumption reasons).

4.2 Modeling Ticket Costs

Pricing systems of railway companies are very complex. Unfortunately, ticket
costs are typically not proportional to the distance traveled. The cost of the
distance traveled in one train depends not only on the number of kilometers
but also on its train class and other train classes used in the connection. Cur-
rently there are different supplementary fares for the different higher speed train
classes. Furthermore, the system undergoes rapid change. In building timetable
information systems it should not be the task to rebuild pricing components.

To be resistant to the changes in the pricing system (to some degree) we have
a black-box pricing component (BPC) that can be used to calculate the ticket
cost for some connection. Unfortunately, one call to this black-box routine is very
costly: The path information stored in labels has to be converted into structures
for the BPC. Much additional information like attributes on the train edges has
to be set to get a correct price. Therefore, it is not at all possible to calculate
the correct price for every label and achieve a bearable running time.

As a consequence we use price estimates in the labels that are updated during
the search. The distance between the two stations of a train edge is taken as
the straight line distance obtained from the coordinates of the stations. For
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every train edge the price estimate is increased by the distance times a factor
depending on the train class used. The supplementary fare is paid once and only
for the highest train class involved.

This simplified model provides helpful estimates for the search. In order not
to loose low cost connections due to this approximation we need a safety margin
which is incorporated into the corresponding relaxation function for the relaxed
Pareto dominance. Here another benefit of the Pareto relaxation (compare Sec-
tion 2.3) comes into play, enabling us to model some exceptions: For example,
there might be a special offer (like “Schönes Wochenende-Ticket” in Germany)
for traveling on weekends for a fixed price independent of the distance but valid
only on non-high speed trains. The relaxation allows us not to compare con-
nections using no high speed trains to connections with high speed trains on
weekends. After a search is completed, all connections are correctly priced by
the BPC and relaxed Pareto dominance can be applied to true fares.

5 Speed-Up and Space-Saving Techniques

5.1 The Station Graph for Lower Bounds

For the strategies goal direction (Section 5.3) and to discard labels dominated
by labels at the target station (Section 5.2) lower bounds for the distance from
any node n to the target are required.

Let us consider lower bounds for the criterion travel time: Regarding space
efficiency, it is not reasonable to store a precomputed lower bound for every
pair of stations. Thus, these values must be computable “on the fly” during the
search. One easy approach for calculating a lower bound on the remaining travel-
time is to calculate the straight-line distance from the station S(n) of node n to
the target station Ω and divide this value by the fastest travel speed of all trains
in the data, as used for example by Schulz, Wagner and Weihe [17]. Empirical
testing revealed that this method leads only to a small speed-up.

Our idea, giving tighter lower bounds, uses the station graph. This graph
consists of one node per station and we insert an arc from station A to B if
there is a direct connection and take as the travel time the minimum among all
such connections (not considering traffic days). If we simply reverse all edges in
the station graph we may use one Dijkstra-search on the station graph starting
at the target station Ω at the beginning of each search and get a lower bound
on the travel time to Ω for every station or the information that no connection
to Ω exists.

5.2 Domination by Labels at the Terminal

To reduce the number of labels investigated during the search, a simple heuristic
improvement can be utilized that relies upon the simple fact, that if P is a Pareto
optimal path, then any subpath P ′ of P must also be Pareto optimal.

We use the following lower bounds on the cost of a path from node v to station
Ω for the three criteria:
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• The value from the station graph as lower bounds on travel time.
• The trivial lower bound zero for the number of interchanges.
• The straight line distance from the station S(v) of v to Ω multiplied by the

cost for traveling in the lowest train class for the ticket cost.

We maintain a list of strict Pareto optimal labels at the terminal station Ω.
Not all relaxed Pareto optimal labels are stored in that list to keep it short.
Every new label is checked against each label in this list. If the values of the
label plus the lower bounds are dominated by any label in the list there is no
need to further regard the new one and it is not inserted into the priority queue.

5.3 Goal-Direction in PARETO

We use travel time as the criterion for goal direction and only fall back on the
number of interchanges for breaking ties. The smaller relation for the priority
queue orders the labels according to the sum of the time traveled so far, the lower
bounds for the travel time to the target station (computed via the station graph
(see Section 5.1)) plus γ times the number of interchanges for some constant
γ > 0. Although the search cannot be terminated once the first label at the
target station Ω is extracted from the priority queue using goal direction, labels
at Ω are generated fairly early in the search process, thus improving the efficiency
of the strategy from the previous section.

5.4 Skipping Arrival Events

Having a arrival and d departure nodes on the change level results in 2 · (a + b)
waiting edges (a + d for forward and backward search each). In forward search
there is no need to consider arrival events except the ones that are extracted
from the priority queue (inserted as the target of a feasible train edge). Thus
we may arrange the change nodes in two cycles, one by linking the departure
change nodes with waiting edges according to increasing time values (for forward
search) and the other by linking arrival change nodes ordered by decreasing time
value (see Figure 1 right). Applying this construction we only need d waiting
edges for forward search and a for backward search. Thus we save half of the
edges and operations on the change level.

5.5 The Impact of Speed-Up Techniques

We ran our algorithm on over 5000 queries stemming from an internet server
of Deutsche Bahn AG (original customer queries). They include forward and
backward searches with and without train class restrictions and attribute re-
quirements but no vias. The time table data was prepared for one week and
all queries were shifted to the corresponding weekday in that week. The result-
ing graph has about 1 million original arrival and departure nodes and half a
million of train edges and about 1.8 million additional edges. Up to now the
sole purpose of our implementation was to countercheck the results of the server
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Table 2. The impact of various speed-up techniques. The percentages (right columns)
give the increase compared to the run with all speed-up techniques activated.

activated all noDom noGoal noSkip noSkip
Speed-Ups + noGoal
given in k k % k % k % k %
PQMinOps 309 2302 526 459 49 526 70 776 144
LabelsUsed 599 4544 659 884 48 802 34 1145 91
LabMaxAct 223 949 326 316 42 376 69 523 135
DomTarget 81 0 -100 77 -5 80 -2 60 -26
StationsHit 1.7 5.5 215 2.1 21 1.7 0 2.1 19
PQ Before 17 17 0 169 920 26 62 266 1507

currently used by Deutsche Bahn AG. Speed considerations were only secondary
goals. The algorithm solves queries with an average computational time of less
than 5 seconds on an Athlon XP 2100+ PC with 1 Gigabyte of RAM both un-
der Unix using the GNU Compiler version 2.95.3 and under Microsoft Windows
using MS Visual Studio 6.0.

As we did not fine tune the computational efficiency of our prototype, we con-
sider in the following only operation counts to study the impact of the proposed
heuristics. Computational results are shown in Table 2. The column headings
describe the activated speed-up techniques for the corresponding column:

all. All speed-up techniques activated.
noDom. Domination by a label at the terminal station (see Section 5.2) is

deactivated.
noGoal. Goal-direction (see Section 5.3) is deactivated.
noSkip. The modification of the graph in the skipping arrival events heuristic

(see Section 5.4) is not done.

The rows in Table 2 give the average numbers (left) or the increase (in percent
on the right) compared to the run with all speed-up techniques turned on. We
used the following key values as operation counts:

• The number of extractMin()-operations on the priority queue for the whole
search (PQMinOps) and before creation of the first label at the target station
(PQBefore).

• The number of labels used for the search (LabelsUsed).
• The maximum number of labels active at the same time (LabMaxAct).

This is the minimum number of labels that must fit into the main storage.
• The number of labels dominated by other labels at the target station (Dom-

Target).
• The number of stations that were hit by the search (StationsHit).

We now take a look at the three main speed-up techniques.

Dominated by labels at terminal. This technique is powerful in bounding the
number of operations and labels needed for the search. When combined with
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goal direction it makes the search much faster and significantly reduces the
memory consumption. Deactivating this strategy slows the search down by a
factor of over 5. It leads to the exploration of nearly 3 times as many stations
and requires about 4 times as many labels in memory at the same time.

Goal direction. This technique produces labels at the target station fairly early
in the search and is instrumental to significantly improving the performance
of strategy “dominated by labels at terminal”. Deactivating goal direction re-
sults in an increase of nearly 50% of the first four key values. After deactivation
about 10 times as many operations as with goal direction are needed to reach
the terminal station.

Skip arrival events. This strategy reduces the number of extractMin()-operations
on the priority queue. Unnecessary labels for waiting are neither created nor
inserted into nor extracted from the priority queue.

6 Comparison to the Deutsche Bahn Server

In this section we want to present a comparison between the quality of results
computed by PARETO and the server currently used by Deutsche Bahn AG. The
comparison was performed by Deutsche Bahn Systems personnel due to licensing
reasons concerning the Deutsche Bahn server. We will present a measurement
of quality based on three costumer groups as utilized internally by Deutsche
Bahn AG. PARETO was delivered to DB systems without knowing the utility
functions beforehand (i.e. we did not fine tune PARETO to look good with
respect to these functions). Various quality distributions with respect to these
groups are shown.

6.1 Utility Functions for Customer Groups

A weighted multi–criteria function is used to evaluate the quality of a connection
c that looks like this (compare Section 2.3):

N(c) = ϕ · travel time + ξ · number of interchanges + ϑ · ticket cost.

There are three groups of costumers, each with another set of parameters P =
(ϕ, ξ, ϑ). These parameters were chosen by Deutsche Bahn Systems.

• The first group of costumers is mainly interested in travel time. A represen-
tative is a businessman. The parameters are P = (100, 1000, 1).

• The second group of costumers is mainly interested in convenience, i.e. the
number of interchanges. Travel time is not unimportant, too. This group may
contain a family with children, elderly people or a handicapped person. The
parameters are P ′ = (12.5, 1500, 1) for this group.

• The third group of costumers is mainly interested in ticket cost. No other group
is willing to spend so much time (hourly wage of 4.80 Euro for traveling longer)
or to accept additional interchanges to save so little money. A representative
is a student. The parameters are P∗ = (8, 5, 1).
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6.2 Quality Distribution for Costumer Groups

All connections are evaluated for all three costumer groups independently. The
best connection for a group copt found by one of the two servers is used to
normalize the value. The quality points for connection c are positive integers not
greater than 100: Q(c) = 	N(copt)/N(c) · 100
 .

Fig. 2. Quality points for groups businessmen and handicapped. The number of con-
nections is given in logarithmic scale.

Fig. 3. Quality points for group student. On the right, we show a partition of the
number of found connections with respect to the two servers.

For each user group, we evaluated the achieved quality points independently,
see Figs. 2 and 3. Note that the number of connections is given in logarithmic
scale. As we are only interested in “very good” connections we will not show
connections with a value below 95. In this region of highest quality between
95 and 100 quality points, PARETO manages to outperform the Deutsche Bahn
server significantly for every user group. (The gap becomes even larger for ranges
below 95.) A deeper look into the results further revealed that the connections
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found by the two servers differ from each other surprisingly often. In Fig. 3 (right
part), we display for the students group the partition of all connections into those
found solely by the Deutsche Bahn server or by PARETO, respectively, and those
found by both of them. Again, PARETO clearly delivers many more alternatives
of very high quality above 94 points. The figures for the other user groups look
rather similar.

7 Conclusion and Outlook

In this paper we have presented the concept of our timetable information server
PARETO. Its major goal is to search for all “reasonably attractive” train con-
nections for given customer queries and different groups of users. To formalize
this goal and to avoid some weaknesses of ordinary Pareto dominance in multi-
criteria optimization, we introduced the concept of relaxed Pareto dominance.
Based on a fully-realistic time-expanded graph model, PARETO outperforms
with respect to quality the current state of the art timetable information server
of Deutsche Bahn AG. We briefly sketched some implementation issues especially
concerning space and time consumption and experimental results.

There are many more interesting aspects in the field of timetable information.
In the future, we plan to consider some of these and add extensions to the func-
tionality of our tool. Such extensions are for example:

Secure interchanges. All connections where the time for a train change is not less
than the minimum time needed for the change with respect to the interchange
rules are valid. Connections providing a buffer time of k minutes for some k > 0
have a lower possibility of missing a train due to a delay of the arriving train.
Such secure alternatives are especially noteworthy if a connection is the last
connection of a day, i.e. a missed train would result in a night’s stay to take the
first train in the morning.

Guaranteed interchanges. The time buffer for an interchange is calculated as the
difference between the arrival and departure of the trains involved minus the
time needed for the interchange. Some connections have guaranteed interchange
times. For example, ICE A waits for ICE B at station S at least 20 minutes.
Although the interchange would be considered insecure for a calculated buffer
of less than 2 minutes, the real buffer now is 20 minutes and that is pretty safe.
Similar rules exist for the last busses in evenings that wait for the last trains to
arrive.

Avoiding highly frequented trains. Trains often working to capacity currently have
a static special attribute in the timetable data indicating high usage. If trains
with known potential of working to capacity appear among the best connections,
a timetable information system should be able to produce alternatives with less
frequently used trains.

Seat reservability. Currently connections using identical trains in the same or-
der are equivalent. If information about the reservation possibilities is available
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the location of train changes becomes important. The possibility of reservation
throughout the whole connection might be possible for some orders of train
changes and not for others.

Search for special offers. Every tariff that enables costumers to buy a ticket for
a price below the actual standard ticket cost is considered a special offer (e.g.
the already mentioned “Schönes Wochenende” ticket for non high speed connec-
tions). Basically there are two categories of special offers, one with and the other
without quotas limiting the availability of the offer. Offers subject to quotas re-
quire very short updating periods for the data concerning the current quotas.
Active search for such special offers (with or without quotas) is an important
extension to finding cheaper connections.

Search for event trains. Special event trains are introduced for the purpose to
bring participants jointly to events like soccer matches, the “love parade” in
Berlin or the “Oktoberfest” in Munich. Such trains should be offered to the
target group. Hence, it is necessary to be able to inform participants of such
events explicitly about these trains even if they are not as good as others by
standard criteria.
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